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The global pandemic of obesity is increasing. Inappropriate food intake relative to energy expenditure results
in increased adiposity. These factors are partly regulated by signals through the gut-brain and adipose-brain
axes. Metabolic operations (otherwise known as Bariatric surgery) offer the most effective results for
sustained metabolic improvement and weight loss. They modulate a number of gut hormones that constitute
the gut-brain axis. This review summarizes the literature to-date reporting the gut hormone changes
associated with these operations and their subsequent effects on appetite. Understanding the anatomical
differences between each operation and how these can differentially regulate gut hormonal release can
provide new treatments and targets for obesity, appetite and metabolic disorders.
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1. Introduction

Obesity has become a major contributor to the global burden of
chronic disease, affecting virtually all ages and socioeconomic groups.
Despite the application of a variety of traditional treatment therapies,
including the promotion of good diet and exercise, the incidence of
morbid obesity continues to rise, with a parallel increase in cardiac
disease, and now not only affects the adult population but increasingly
the paediatric demographic as well. This has led to focused research
on introducing and refining an arsenal of obesity treatmentmodalities
that recently has included bariatric surgery [1], an umbrella group
of operations that are now also known as ‘metabolic surgery’. This
treatment for obesity has shown the best results for rapid weight loss,
which improves multi-systemic morbidity and mortality rates, with a
corresponding decrease of health-care costs [2,3].

The gastrointestinal tract is the largest endocrine organ in the body
and it was through the discovery of gut hormones that the field of
endocrinology initially developed. Bayliss and Starling first discovered
‘Secretin’ by demonstrating that an acidic infusion into a denervated
jejunum led to pancreatic secretions, whilst a similar application
of intravenous acid could not reproduce this [4]. Following the
introduction of more advanced biochemical techniques in the 1960s,
Secretin and a number of other gut hormones have been identified
and now constitute the gastro-entero-pancreatic system. Many of
these hormones have actions on the central nervous system and
appetite, working through the so-called gut-brain axis. Of these,
cholecystokinin (CCK) was the first hormone that was studied for its
effect on satiety [5,6].

The involvement of the central nervous system in the pathogenesis
of obesity has been clearly identified through the identification of
genetic variants at the FTO [7] (fat mass and obesity associated) and
MC4R [8] (melanocortin 4 receptor) loci. However, the purpose for
Fig. 1. The central regulation of appetite and energy balance leading to obesity, and the ro
adipose-brain axes. Restrictive procedures (gastric banding, gastroplasty and sleeve gastre
biliopancreatric diversion) exclude food from the stomach and duodenum (foregut) and ther
from the jejunum and proximal ileum (midgut) also exposing the hindgut.
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this article is to review the association between bariatric surgery and
the role of surgically modulated gut hormones in altering appetite.
2. Hormonal control of central appetite regulation

Both long and short-term peripheral hormonal signals can
influence feeding and eating behaviour. The hypothalamus has an
important role in the control of appetite, although other regions also
carry out processing of signals to contribute to this regulation. These
include the nucleus tractus solitarius and the area postrema.

Hormonal signals and neural signals are integrated to coordinate
both feeding behaviour and energy balance. Long term signals are
mainly humoral and include information regarding overall health,
endocrine status and systemic energy store levels. Shorter term
signals include gut hormones and neural signals from feeding centres
in the brain, regulating meal initiation and termination [9].

An inappropriate energy balance or excessive eating behaviour will
result in obesity as a result of a net increase in energy balance. This has
been hypothesised to result from a rise of the brain's energetic “set-
point” [10]. Under stable physiological circumstances, these set-points
tend to only increase and can only be decreased by extreme stress
situations such as starvation. Despite the development numerous
pharmacological agents and lifestyle interventions, clinicians continue
tofind the epidemic of obesity a treatment challenge. Natural feedback
mechanisms regulating these set-points include the gut-brain and the
adipose-brain axes. The gut-brain axis consists of gut hormones
(enterokines) and gut neuronal signals (including those from the from
the vagus) [11] whereas the adipose-brain axis consists of adipose
hormones (adipokines) [12] (Fig. 1). The most successful sustained
weight-loss therapy to-date for morbid obesity is bariatric surgery [2].
These interventions have been demonstrated to significantlymodulate
le of bariatric surgery in modulating gut and adipose hormones via the gut-brain and
ctomy) constrict the foregut, whereas foregut bypass procedures (gastric bypass and
efore expose the hindgut. Midgut bypass procedures (jejuno-ileal bypass) exclude food
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endogenous gut and adipose hormones to influence both energy
balance and appetite.

3. Concepts in measuring gut hormones

Some gut hormones circulate as single peptides, whilst others are
peptides of different lengths and amino acid patterns (such as gastrin).
This requires the technique of radioimmunoassay to be directed,
not only to one peptide, but also for plasma patterns characterized by
a predominance of specific peptides that correspond to one hormone.
Furthermore, it can also be useful to measure levels of biological
precursors and processing intermediates to attain an increased
diagnostic accuracy [13,14].

The reliability of measurements also requires peptide specific
considerations such as identifying and controlling for variables that
exist during sample collection, timing, processing, storage, calibration
and bioassay. Sufficient methodological detail is not always available
in the literature, and therefore communication and collaborationwith
well-informed researchers are essential.

4. Bariatric or metabolic surgery

The word ‘bariatric’ stems from the combination of two Greek
words, namely ‘baros’ and ‘iatrike’ which combine to literally mean
‘weight treatment’. The first procedures were derived independently
in the mid-1950s by Arnold Kremen [15] and Richard Varco [16,17].
The subsequent use of ‘bariatric surgery’ designates an umbrella term
to account for all surgical procedures that are used to help in the
reduction of excess weight.

These operations are further subdivided by surgeons into three
groups; restrictive surgery, pure bypass operations (or so-called
malabsorptive surgery) and combinative procedures. Technically a
fourth category would include other procedures such as jaw wiring
and fat-debulking surgery that includes abdominoplasty, liposuction
andomentectomy, although these arenot generally consideredaspurely
bariatric operations. They can however mildly reduce weight in their
own right, and can be used in conjunction with more conventional
bariatric procedures.

Restrictive surgery literally restricts or decreases the size of the
stomach and causes reduced hunger or earlier satiety with smaller
volumes of food. Procedureswithin this category include gastric banding
(GB)where anadjustable band isplacedbelow the cardia of the stomach
to create a small upper gastric pouch. Alternative restrictive techniques
include a sleeve gastrectomy (SG) – a newer procedure where literally a
large ‘sleeve’ of stomach is resected leaving a small gastric tube with an
intact pylorus. Older methods of restriction include gastroplasty which
partitions the stomach with the use of a stapler (either horizontally or
vertically), limiting the area of the stomach to which food enters. Both
procedures can be performed laparoscopically and can be carried out
concurrently as in a vertical banded gastroplasty (VBG), where both
banding and stapling take place.

Pure Bypass Operations or so-called ‘Malabsorptive Surgery’ was
initially designed with the aim of decreasing the absorption of
nutrients by excluding food from segments of the alimentary tract by
either shortening tract length, bypassing anatomical segments of the
gastrointestinal system, or even inter-transposing various segments of
bowel. Examples of this are the first described bariatric procedure of
jejuno-ileal bypass (JIB) [15], the duodenojejunal bypass (DJB) [18],
and biliopancreatic diversion [19] with or without duodenal switch
[20]. Although these procedures can successfully induce weight loss,
the term ‘malabsorptive’ can be misleading as there is no clear
evidence that ‘malabsorption’ accounts for the dramatic weight loss
observed [21–23].

Combination surgery aims to join the benefits of both restrictive and
malabsorptive procedures. Examples include Roux-en-Y Gastric Bypass
(RYGB) [24,25]. Here a small stomach pouch is created by partial
Downloaded for Anonymous User (n/a) at Massachusetts General
For personal use only. No other uses without permissio
gastrectomy and subsequent anastomosis of the small stomach pouch
to the jejunum (gastro-jejunostomy). Bypass is then achieved by
identifying the transected stomach remnant and its attached segment
of duodenum and proximal jejunum, which is then mobilized at the
jejunal end (The Roux-en-Y limb), to be anastomosed to a distal
segment of the jejunum to form a jejuno-jejunostomy. Chyme now
passes from the small stomach pouch directly to the jejunum,
bypassing a large area of the stomach and the duodenum. As a result
RYGB procedure can be summarised to result from five components:
(1) small stomach pouch, (2) bypassed stomach and proximal small
bowel, (3) alterations in the flowof bile, (4) manipulation of the vagus
nerve (that can vary) and (5) distal small bowel being brought more
proximally and thus allow earlier contact with food.

Due to their dramatic effects on the resolution of diabetes,
metabolic syndrome and the cardiovascular system [26,27], these
procedures are now considered as metabolic operations, particularly
as many of their metabolic actions occur before any noticeable weight
loss [28]. Furthermore, the role of metabolic modulation in the actual
process of weight loss itself has become increasingly recognised.

In 1975 it was revealed that gastrointestinal bypass operations
could modulate some gut hormones [29,30]. Many of these surgically
modulated hormones have anorectic actions, and their post-operative
weight-loss effects can be significant, even when confronted with
severe underlyingmetabolic dysfunction [31]. Not all bariatric patients
achieve a ‘goodweight loss’ as approximately 10–15% of gastric bypass
patients have a ‘poorweight loss’ that is associatedwith a greater Body
Mass Index, male sex, and diabetes [32,33]. This may represent a
diminished gut hormone release or response, as increasing evidence
demonstrates treatment with external gut hormones can augment
weight loss, whereas gut hormonal blockade by antibodies or
pharmacological agents (such as Octreotide) can diminish the weight
loss seen in these operations [22].

5. Obesity classification and current indications for bariatric
procedures

The National Institutes of Health (NIH), The American College of
Surgeons (ACS), The Society of Gastrointestinal Endoscopic Surgeons
(SAGES), The American Society of Bariatric Surgeons (ASBS) and the
United Kingdom's National Institute for Health and Clinical Excellence
(NICE) have similar guidelines which identifies patients who could be
considered for bariatric surgery. In general bariatric surgery is
indicated in morbidly obese patients (Body Mass Index (BMI)N
40 kg/m2), or those with BMIN35 kg/m2 who suffer with significant
comorbidities. Surgery should only be considered in these patients
in the event that non-surgical treatment has been unsuccessful,
and that all patients are reviewed and followed up within in a multi-
disciplinary specialist obesity unit.

In order to classify modulated gut hormones in this review, we
have listed them according to the embryological site of their release:
foregut, midgut and hindgut. This further allows us to consider each
operation from a metabolic viewpoint (Fig. 1). Here restrictive
procedures (gastric banding, gastroplasty and sleeve gastrectomy)
constrict the foregut, whereas foregut bypass procedures (gastric
bypass and biliopancreatic diversion) exclude food from the stomach
and duodenum (foregut) and therefore expose the hindgut to altered
chyme. Midgut bypass procedures (jejuno-ileal bypass) exclude food
from the jejunum and proximal ileum (midgut) also exposing the
hindgut to altered chyme.

6. Foregut hormones

6.1. Ghrelin

Ghrelin is a 28 amino acid peptide that is a peripherally active
appetite stimulating hormone (Orexigen). It is released mainly from
 Hospital from ClinicalKey.com by Elsevier on March 12, 2018.
n. Copyright ©2018. Elsevier Inc. All rights reserved.
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the gastric epithelial cells, although there is also some expression in
the pituitary gland [34]. Circulating levels are inversely correlated
with body weight and rise following weight loss. Furthermore, levels
rise during fasting and fall rapidly after a meal. Calorie intake appears
to be a primary regulator of plasma levels, although circulating levels
are lower in obese individuals, revealing a possible role to decrease
food intake in this population [35,36].

This dual expression both within and outside the central nervous
system has led to the identification of its dichotomous actions
peripherally and centrally. Central injection of ghrelin results in a
direct orexigenic action on the hypothalamus, whereas peripheral
administration results in potent growth hormone secretion and the
stimulation of food intake via the gut-brain axis. This is likely to take
place through the vagus nerve, where the appetite stimulation can be
abolished after vagotomy [11]. Parenteral nutrition can decrease
levels, but does not alter hunger, suggesting a more complex role than
of that of simply orexigen. Its actions also include glucose home-
sostasis and adipocyte metabolism [37,38].

The effects on appetite are mediated through the ARC of the
hypothalamus by activation of NPY/agouti-related peptide neurons. It
also mediates feeding behaviour through third ventricular and
Table 1
Modulation of Ghrelin after bypass procedures.

Author Year Procedure No.

Cummings et al. [36] 2002 RYGB 5
Holdstock et al. [40] 2003 RYGB 10
Leonetti et al. [41] 2003 RYGB 11
Faraj et al. [42] 2003 RYGB 50
Tritos et al. [43] 2003 RYGB 6
Adami et al. [44] 2003 BPD 15
Lin et al. [45] 2004 RYGB 34
Vendrell et al. [46] 2004 RYGB 34
Frühbeck et al. [47] 2004 RYGB 15
Frühbeck et al. [48] 2004 RYGB 6
Frühbeck et al. [48] 2004 BPD 3
Frühbeck et al. [49] 2004 RYGP 8
Adami et al. [50] 2004 BPD 24
Stoeckli et al. [51] 2004 RYGB 5
Morinigo et al. [52] 2004 RYGB 8

García-Unzueta et al. [53] 2005 BPD 30
Korner et al. [54] 2005 RYGB 12
Mingrone et al. [55] 2006 BPD 6

Korner et al. [56] 2006 RYGB 9
Chan et al. [57] 2006 RYGB 6
Kotidis et al. [58] 2006 BPD-DS 13
Stratis et al. [59] 2006 BPD-RYGB 20
Couce et al. [60] 2006 RYGB 49
Santoro et al. [61] 2006 DAIR 55
Santoro et al. [62] 2006 DAIR 100
Kotidis et al. [63] 2006 BPD-DS 13
le Roux et al. [22] 2006 RYGB 6
Valera Mora et al. [64] 2007 BPD 11
Sundbom et al. [65] 2007 RYGB 15
le Roux et al. [23] 2007 RYGB 16
Whitson et al. [66] 2007 RYGB 10
Liou et al. [67] 2008 Mini-RYGB 68
Santoro et al. [68] 2008 DAIR 228
Rodieux et al. [69] 2008 RYGB 8
Foschi et al. [70] 2008 RYGB 10

Karamanakos et al. [71] 2008 RYGB+SG 16
Heap et al. [72] 2008 Heap Procedure 246
Garcia-Fuentes et al. [73] 2008 BPD 38
Garcia-Fuentes et al. [73] 2008 RYGB 13
García de la Torre et al. [74] 2008 BPD 11
García de la Torre et al. [74] 2008 RYGB 17
Pardina et al. [75] 2009 RYGB 34

Levels are stated as basal unless indicated as post-prandial in brackets. NC=no significa
DS=Biliopancreatic Diversion with Duodenal Switch, GB=Gastric Band, VBG=Vertical Ban
Reserve.
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adjacent neurones. It is an endogenous ligand for the growth hormone
secretagogue receptor (GHS-R), and binding requires a vital acyl side
chain on a serine residue at position 3 [39].

The results of bariatric surgery in modulating Ghrelin have been
controversial. Those studies involving foregut bypass (either gastric
bypass or biliopancreatic diversion) (Table 1) reveal that of 42 studies,
50% revealed a decrease, 26% no significant change and 24% revealed
an increase. Although it would have been expected that these
operations would decrease hunger and therefore decrease ghrelin,
this has not been the case. The studies that reveal an increase in
ghrelin post-operatively still do not report a rise in levels seen in lean
controls. Furthermore, a number of studies that report a decrease do
so by quoting the immediate drop of ghrelin post-operatively in a
physiological state of surgical stress. The longer-term studies tend to
favour no significant circulating or post-prandial level changes for this
hormone, indicating that bypassing the stomachmay not directly alter
ghrelin release.

The results for restrictive operations (Table 2) however revealed
that of 22 studies, 50% reported an increase, 32% reported no
significant change and only 18% reported a decrease. From clinical
experience these operations are considered to decrease hunger and
F/U Ghrelin

9–31 months Decrease 24 h Ghrelin
12 months Increase
9–15 months NC (post-prandial)
9–21 months Increase with active weight loss
10–26 months Decrease (after glucose load)
2 months NC
10 min Decrease immediately after surgery
6 months Increase
24 h Decrease
6 months Decrease (compared to BPD and GB)
4 months Not decreased to same extent as RYGBP
6 months Decrease
12 months Increase
24 months NC
6 weeks Decreased levels, although no significant

post-prandial change
12 months Increase
30–40 months NC (post-prandial)
14 days Increased levels (though still less than controls),

decreased pulsatility
180 min No significant change
10–26 months Decrease (post-glucose test)
18 months Decrease
12 months NC
6 months NC
12–34 months Decrease
1–29 months Decrease
18 months Decrease
6–36 months NC (post-prandial)
18 months Increase
12 months Increase
42 days NC (post-prandial)
6 months NC
12 months NC
12–60 months Decrease
9–48 months Decrease (post-prandial)
20% decrease BMI Decrease, although no significant

post-prandial change
12 months Decrease
2 months Decrease
7 months NC
7 months Increase
9 – 12 months Decrease
9 – 12 months Decrease
12 months Increase

nt change. RYGB – Roux-en-Y Gastric Bypass, BPD=Biliopancreatic Diversion, BPD-
ded Gastroplasty, SG=Sleeve Gastrectomy, DAIR=Digestive Adaptation with Intestinal

spital from ClinicalKey.com by Elsevier on March 12, 2018.
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Table 2
Modulation of Ghrelin after restrictive surgery.

Author Year Procedure No. F/U Ghrelin

Leonetti et al. [41] 2003 GB 10 9–15 months NC (post-prandial)
Geloneze et al. [79] 2003 VBG 28 12 months NC (post-prandial)
Hanusch-Enserer et al. [80] 2003 GB 12 12 months NC (Basal)
Lin et al. [45] 2004 VBG 4 10 min NC (Basal)
Frühbeck et al. [47] 2004 GB 12 24 h Increase
Frühbeck et al. [48] 2004 GB 7 7 months Not decreased to same extent as RYGBP
Frühbeck et al. [49] 2004 GB 8 6 months Increase
Hanusch-Enserer et al. [77] 2004 GB 18 12 months Increase at 12 months (not 6 months)
Nijhuis et al. [81] 2004 VBG 7 24 months Increase
Nijhuis et al. [81] 2004 GB 10 24 months Increase
Schindler et al. [82] 2004 GB 23 6 months Increase
Stoeckli et al. [51] 2004 GB 8 24 months Increase
Foschi et al. [83] 2005 VBG 12 20% decrease BMI Increase, recovers response to meal
Korner et al. [56] 2006 GB 9 180 min Decrease – significantly blunted (post-prandial)
Kotidis et al. [63] 2006 VBG 13 18 months Increase
le Roux et al. [22] 2006 GB 6 6–36 months NC (post-prandial)
Cigaina and Hirschberg [84] 2007 G-Pace 11 6 months Increase of basal and post-prandial levels after activation
Shak et al. [85] 2008 GB 24 6–12 moths NC
Foschi et al. [70] 2008 VBG 12 20% decrease BMI Increase, decrease (post-prandial)
Wang et al. [86] 2008 GB 15 24 months Increase (basal)
Wang et al. [86] 2008 SG 10 24 months Decrease (basal)
García de la Torre et al. [74] 2008 VBG 17 9–12 months NC

Levels are stated as basal unless indicated as post-prandial in brackets. NC=no significant change. GB=Gastric Band, VBG=Vertical Banded Gastroplasty, G-Pace=Gastric Pacing.
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not necessarily satiety [76], and therefore the reported increase in
ghrelin might be a reflection of a ‘normalized’ level of ghrelin lost in
the morbidly obese. One study indeed reported no change of ghrelin
levels at 6 months but an increase at 12 months [77], whilst another
revealed a significantly blunted post-prandial response [56]. The
modulation of ghrelin by these restrictive operations may not
therefore necessarily contribute to the weight loss seen in these
procedures, but rather may contribute to other physiological systems,
including the successful long-term diabetic control seen in some
gastric band patients [78]. It is also interesting to note that one of the
two studies reporting a post-surgical increase in ghrelin was for the
more recent sleeve gastrectomy procedure. This procedure requires
increased study before further insights can be revealed regarding its
gut hormonal modulation.

6.2. Gastrin

Gastrin is a peptide hormone produced by G cells in the duodenum
and the pyloric antrum of the stomach by post-translational
processing of preprogastrin. It stimulates acid secretion primarily by
releasing histamine from enterochromaffin-like cells, and mediates
many of its effects primarily through the CCK-2 receptor [87]. It
was the first gut hormone to be studied in the context of bariatric
surgery as early as 1975 following earlier studies that demonstrated
a significant rise in this hormone after small bowel resection [29,30].
Although a minority of studies reveal an increase in basal and post-
prandial levels mainly in jejuno-ileal bypass [88,89], the vast majority
of bypass procedures reveal either no significant change or a decrease
of both circulating and post-prandial levels [29,30,65,89–104]. The
one study of gastric banding and gastrin reveals no significant post-
operative change [85], whereas restriction by VBG has been shown to
increase both basal and post-prandial levels [93,105]. Such a rise in
gastrin might contribute to the rare complication of gastric pouch
ulcer seen after VBG [106].

6.3. Glucose-dependent insulinotropic peptide or Gastric Inhibitory
Peptide

Glucose-dependent insulinotropic peptide or Gastric Inhibitory
Peptide (GIP) is 42 amino acids long, derived from a 153 amino acid
precursor. It is released by K cells in the duodenum and proximal
jejunum following carbohydrate and fat ingestion, where rate of
Downloaded for Anonymous User (n/a) at Massachusetts General
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absorption and not luminal content presides as the main stimulus for
release [107].

GIP regulates adipocyte metabolism, though its effects on lipolysis
and lipoprotein lipase activity, fatty acid synthesis and insulin-
stimulated incorporation fatty acids to triglyceride maturation [108].
It promotes an energy storage state, and GIP-knockout mouse
demonstrate a decreased adipocyte mass and a resistance to diet
induced obesity. Although the effects on food intake are not clear, GIP
does demonstrate an increase in energy expenditure [109]. It is known
to have an incretin (or insulin-like) effect, and induces β-cell
proliferation and inhibition of apoptosis [110].

Out of 10 foregut bypass studies,1 revealed an increase in GIP [111],
one reported no significant change [66], and 8 reported both basal and
post-prandial decreases [94,112–118]. As the foregut is bypassed, a
trend of decreased post-operative GIP levels can be discerned. As
these operations are well known to improve type 2 diabetes control,
the decreased incretin effect is unlikely to have a significant role in
post-surgical diabetes resolution. The midgut bypass procedures
follow a trend of the foregut bypass procedures, with the majority
revealing decreased levels [92,119–124]. No clear trends can be
discerned from the few studies on restriction [56,85,125,126].

6.4. Pancreatic Polypeptide

Pancreatic Polypeptide (PP) is a 36 amino acid peptide that is
released mainly from cells at pancreatic islet peripheries according to
an underlying circadian rhythm. It is known to relax the gallbladder,
inhibit pancreatic secretion and regulate appetite. Its release is
proportional to caloric intake and levels remain high for up to 6 h
after a meal [127].

It mediates food intake via both the brainstem and the ARC in the
hypothalamus, where it demonstrates a great affinity for the Y4

receptor [128]. Injection into wild and genetically obese mice revealed
long lasting effects on reduced food intake, decreased weight and
improved glucose and lipid profile. Furthermore genetic expression to
supraphysiologic levels also decreased food intake, alluding to its
continuing anorectic effect despite chronic exposure [129].

Bariatric surgery does not appear to directly influence PP levels.
Out of 8 bypass studies [22,65,92,94,95,130–132], all but one revealed
no significant changes in basal or post-prandial PP levels. Similarly, of
the 4 restriction studies [22,125,126,133], only one revealed a potential
post-operative decrease [125]. Of these restrictive studies, only one
 Hospital from ClinicalKey.com by Elsevier on March 12, 2018.
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has been on gastric banding [22]. Research on the anorectic effects of
PP is still ongoing, and further studies are required to elucidate the
role of this peptide with some of the newer bariatric operations.

6.5. Cholecystokinin

Cholecystokinin (CCK) previously known as Pancreozymin was
the first gut hormone to be studied in the context of appetite. It is
derived from a 115 amino acid precursor, and secreted from I cells in the
duodenum and jejunum after the ingestion of a meal. It has well
characterized effects on gallbladder motility and both gastrointestinal
motility and secretion. These actions occur largely via the CCK-1
(previously CCK-A) receptor and to a lesser extent theCCK-2 (previously
CCK-B) receptor [134].

Peripheral injection of CCK in rodents inhibits food intake in a dose
dependent manner, whereas CCK-knockout subjects and those receiv-
ing antagonists to the CCK-1 receptor diminish CCK's anorexigenic
effect. However CCK-knockouts have the same weight as wild-type
subjects [135], and tolerance develops to the presence of a continuous
infusion. It has therefore been proposed that CCKs effects on appetite
are considered ‘physiological’ as opposed to ‘pharmacological’.

Only six studies of both bypass and restriction measured CCK, one
of which is based on the newer bariatric procedure of gastric pacing
[136]. There is however no clear trend amongst the other studies, with
two revealing no significant change [114,137] and the same group
reporting both increases[138, 139] and decreases in this hormone
[140]. It is unlikely that bariatric surgery mediates is appetite effects
via CCK.

6.6. Motilin

Motilin is a 22 amino acid peptide known for its eponymous effects
on gastric and gut motility. It is a related peptide to ghrelin, and is
released from epithelial cells of the upper intestine to act on its own
receptor (motilin receptor) in association with Phase III of the
migrating motor complex (MMC). Phase III activity has been proposed
to contribute to development of hunger [141]. At lower concentrations
it preferentially stimulates neuronal firing in the proximal gut and
higher concentrations result in direct muscle contractions. The
prokinetic antibiotic Erythromycin is a non-peptide agonist for the
motilin receptor, however our understanding of its central nervous
functional are limited as there is a lack of active motilin in rodent
species. There is only limited data as to the presence of motilin mRNA
in the brains of higher mammals [142]. Only three studies of both
bypass and restrictionmeasuremotilin, where levels are found to both
rise and decrease after bypass procedures [121,130,139].

6.7. Enteroglucagon

Enteroglucagon (EG) is an umbrella term referring to gut glucagon-
like peptides that cross reacts with N-terminally directed antiglucagon
antisera but not with C-terminally directed antisera. Two such peptides
have been demonstrated in lower small intestine: glicentin (69 amino
acids) and oxyntomodulin (37 amino acids). Both are products of the
pre-proglucagon gene and are released post-prandially [143].

Of the two, Oxyntomodulin has proved to demonstrate stronger
effects on appetite. Its actions inhibit gastric acid secretion and both
central and peripheral injection leads to decreased food intake. It
binds the GLP-1 receptor, and its anorectic effects are abolished
in GLP-1 receptor knockout mice and by the GLP-1 antagonist exendin
9-39 [144]. Nevertheless, chronic administration decreases food
intake, and also promotes energy expenditure [145].

Studies of gastric banding [22] and VBG [137] reveal no significant
changes in this peptide, although ileal interposition in rat model
has been shown to increase the gene expression of proglucagon
[146]. Half of foregut bypass procedures, and all the midgut bypass
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procedures demonstrated an increase in enteroglucagon expression
[22,121,132,137,147–149].

7. Midgut hormone

7.1. Neurotensin

Neurotensin (NT) is a 13 amino acid gut peptide [150] and
neurotransmitter that is found in many parts of the brain, where cell
bodies containing NT closely interact with the mesolimbic, mesocor-
tical and nigro-striatal dopamine (DA) circuits [151]. It has been
demonstrated to reduce food intake, and its expression is down-
regulated in leptin deficiency (ob/ob mice) [152].

Five out of six bypass studies [121,139,140,149,153,154] reveal that
NT is significantly increased after surgery, with one VBG study [155]
revealing a decrease and one gastric band study [154] revealing an
increase. A consistent increase in NT could contribute to some of the
appetite effects of the bypass operations.

8. Hindgut hormones

8.1. Glucagon-like peptide-1

Glucagon-like peptide-1 (GLP-1) is both a gut hormone and a
neuropeptide produced by the post-translational processing of the pre-
proglucagon gene. It is co-secreted by the L cells of the gastrointestinal
tract with PYY and Oxyntomodulin. It is cleaved as a 36 or 37 amino
acid peptide and gains further biological activity by truncation at
the N-terminal [156]. Plasma levels increase rapidly after a meal,
although its circulating half-life is less than 5 min. This occurs as due
to its renal clearance and also from its degradation by circulating
enzymes such as dipeptidyl peptidase IV (DPP-IV) [157].

GLP-1 suppresses gastric acid secretion and can acutely decrease
food intake in rats (central injection) [158] and humans by increasing
satiety and reducing hunger [159]. Along with peptide YY (PYY), it is
considered to act as an “ileal-brake”where following ingestion of food,
the distal gastrointestinal tract (hindgut) messages to the proximal
gastrointestinal tract (foregut) to delay gastric and upper intestinal
motility [160]. Five-day prandial injections of GLP-1 decreased body-
weight in obese but otherwise healthy individuals by 0.55 kg [161], and
the GLP-1 agonist exenatide also reduces food intake.

The central nervous effects of GLP-1 are diverse and include the
behavioural responses to stress and anxiety [162]. Its effects on the
reduction of food intake are considered to occur via two mechanisms.
Firstly activation of GLP-1 Receptors in the hypothalamus regulate
calorific intake and secondly GLP-1 Receptors in the Amygdala can
inducemalaise [163], a finding that may explain its role in conditioned
taste aversion. Food intake suppression takes place through caudal
brainstem circuits triggered by exogenous hindbrain GLP-1 Receptor
activation via vagal signals [164]. In addition, endogenous GLP-1
Receptors located in nucleus tractus solitarius (NTS) neurons can also
decrease food suppression and can be driven by gastric (but not
duodenal) satiation signals [165].

GLP-1's effects on appetite can be abolished by vagotomy [166],
although it has also been shown to play a role in lipolysis [167] and
increasing energy expenditure through raised bodily temperature
[168].

Although peripherally administered GLP-1 can also induce satiety,
these effects may only partially occur through the peptide crossing the
blood brain barrier [169]. This is because it has a short half-life (less
than 2 min), which renders it unlikely to mediate all its effects
through central pathways. The effects on the delay of gastric emptying
have therefore been proposed as the most likely mechanism through
which peripheral administration of GLP-1 regulates food intake [170].

GLP-1 acts through the GLP-1 receptor, a G-protein-coupled
receptor of the family B subtype. These receptors are found in the
spital from ClinicalKey.com by Elsevier on March 12, 2018.
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hypothalamus and the nucleus tractus solitarius (NTS). It has been
reported to activate neurones at the ARC, the NTS and also the area
postrema (AP) [171]. Interestingly central GLP-1 injection induces
c-Fos expression in the PVN and not the ARC, and central injection of
the GLP-1 antagonist exendin 9–39 to the ARC does not diminish the
anorectic actions of peripheral GLP-1 [166], suggesting a dominant
role for its effects in the brainstem. Both GLP-1 and its agonist arewell
known to induce nausea.

Of particular note are the powerful incretin effects of GLP-1, where
it has been shown to significantly improve post-prandial glycaemic
control. Its agonist exenatide has not yet been approved for the
treatment of obesity, although it is now used in the treatment of Type
2 diabetes mellitus [172]. GLP-1 upregulates pancreatic β-cell genes,
inhibits β-cell apoptosis and promotes β-cell neogenesis [173].
Although GLP-1 and GIP are both members of the glucagon peptide
superfamily and share a close amino acid homology, they each
work through their own distinct though structurally similar receptor
[174].

Of the foregut bypass procedures (gastric bypass and biliopan-
creatic diversion), only one quoted a decrease of GLP-1 [175], two
quoted no significant changes [114,115], but the vast majority of
studies (86%) with a maximum follow-up of over 36 months revealed
a rise of both basal and post-prandial GLP-1. Although there are only
two studies of midgut bypass (jejuno-ileal bypass), both report an
increased GLP-1, one with a follow-up of 20 years (Table 3).
Table 3
Modulation of GLP-1 and PYY after bariatric surgery.

Author Year Procedure No. F/U

Naslund et al. [139] 1997 JIB 7 6–12 months
Naslund et al. [123] 1998 JIB 12 9 months–20 years
Alvarez Bartolomé et al. [186] 2002 VBG 12 12 months

Cigaina and Hirschberg [136] 2003 G-Pace 11 6 months
Rubino et al. [114] 2004 RYGB 10 3 weeks
Lugari et al. [187] 2004 BPD 22 50% excess weight redu
Clements et al. [115] 2004 RYGB 20 3 months
Korner et al. [54] 2005 RYGB 12 30–40 months
Valverde et al. [9] 2005 VBG 12 6 months
Valverde et al. [188] 2005 BPD 19 6 months
Morinigo et al. [189] 2006 RYGB 9 6 weeks
Morinigo et al. [189] 2006 RYGB 34 12 months

Borg et al. [190] 2006 RYGB 6 6 months
Guidone et al. [116] 2006 BPD 10 1–4 weeks
Korner et al. [56] 2006 GB 9 180 min
Korner et al. [56] 2006 RYGB 9 180 min
Chan et al. [57] 2006 RYGB 6 10–26 months
Stratis et al. [59] 2006 BPD-RYGBP 20 12 months
Santoro et al. [61] 2006 DAIR 55 12–34 months
le Roux et al. [22] 2006 GB 6 6–36 months
le Roux et al. [22] 2006 RYGB 6 6–36 months
le Roux et al. [23] 2007 RYGB 16 42 days
Laferrere et al. [117] 2007 RYGB 8 1 month
Whitson et al. [66] 2007 RYGB 10 6 months
Reinehr et al. [175] 2007 GB 11 24 months
Reinehr et al. [175] 2007 RYGB 19 24 months
Korner et al. [191] 2007 GB 10 180 min
Korner et al. [191] 2007 RYGB 13 180 min
Laferrere et al. [111] 2008 RYGB 9 1 month
Shak et al. [85] 2008 GB 24 6–12 moths
Santoro et al. [68] 2008 DAIR 228 12–60 months
Rodieux et al. [69] 2008 RYGB 8 9–48 months
Karamanakos et al. [71] 2008 RYGB+SG 16 12 months
Heap et al. [72] 2008 Heap Procedure 246 2 months
Garcia-Fuentes et al. [73] 2008 BPD 38 7 months
Garcia-Fuentes et al. [73] 2008 RYGB 13 7 months
Salinari et al. [118] 2008 BPD 9 1 month
Vidal et al. [192] 2008 RYGB 24 N36 months
de Carvalho et al. [193] 2009 RYGB 19 9 months

Levels are stated as basal unless indicated as post-prandial in brackets. NC=no significant c
Band, VBG=Vertical Banded Gastroplasty, SG=Sleeve Gastrectomy, DAIR=Digestive Adap
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In contrast, the three studies on restrictive surgery reveal two
without any changes to GLP-1 after surgery, and the remaining study
quoting an actual decrease in basal levels. The one study on gastric
pacing also revealed a decreased post-procedural GLP-1.

These results reveal that such a rise in GLP-1 is likely to contribute
to the post-operative decrease in food intake seen in bypass
procedures, although the weight loss seen is not purely as a result of
GLP-1 due to then finding that JIB patients increase the levels of this
hormone, but do not demonstrate equivalent weight loss to the
foregut bypasses (gastric bypass and biliopancreatic diversion).

Furthermore, the rise in GLP-1 can positively improve glycaemic
control in type 2 diabetes. Controversy surrounds the small number
of patients which have been diagnosed with nesidioblastosis, where
islet β-cell neoproliferation can result in an adult-onset hyperinsuli-
naemic hypoglycaemia [176]. The exact contribution of GLP-1 on the
development of nesidioblastosis after gastric bypass requires further
elucidation. The paucity of studies on restrictive procedures never-
theless fits in with the clinical finding that they are not as temporally
successful as bypass operations in correcting diabetes [177].

8.2. Peptide YY

Peptide YY (PYY) is a 36 amino acid peptide that is released in
proportion to caloric intake from L cells primarily in the terminal
ileum, colon and rectum, and the proximal ileum to a lesser extent
GLP-1 PYY

Increase (Basal and post-prandial) Increase (Basal and post-prandial)
Increase (Basal and post-prandial)

Increased (post-prandial) compared
to pre-operative levels

Decrease
NC

ction Increase (post-prandial)
NC (basal)
Increase (post-prandial)
NC (basal), NC (post-prandial)
Increase (Basal and post-prandial)
Increase (post-prandial) Increase (post-prandial)
Increase (post-prandial), although
not for established type II diabetics
Increase (post-prandial)
Increase

NC
Increase (post-prandial)
Increase (post-glucose test)
Increase

Increase Increase
No significant change (post-prandial)
Increase (post-prandial)

Increase (post-prandial) Increase (post-prandial)
Increase in response to oral glucose
Increase (basal) only in non-diabetics
Decrease (basal) Increase (basal)
Decrease (basal) Increase (basal)
NC (post-prandial)
Increase (post-prandial)
Increase (after oral glucose)
NC
Increase Increase
Increase (post-prandial) Increase (post-prandial)

Increase
Increase (post-prandial) Increase (post-prandial)

Increase
Increase

Increase (post-glucose test)
Increase (post-prandial)
Increase (post-glucose test)

hange. RYGB – Roux-en-Y Gastric Bypass, BPD=Biliopancreatic Diversion, GB=Gastric
tation with Intestinal Reserve, G-Pace=Gastric Pacing.
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[178]. PYY's functions include delayed gastric emptying and reduced
gastric secretion. It is considered to contribute to the ‘ileal-brake’
phenomenon [160]. Following release, dipeptidyl peptidase IV (DPP-
IV) cleaves the peptide at the N-terminal into two biologically active
forms. PYY(1–36) corresponds to approximately 60% of circulating
levels and PYY(3–36) for the remaining 40% of circulating PYY [179].

Peripheral injections decreases food intake in humans[180] and a
variety of other mammals [181], and this can also be demonstrated by
a central injection into the ARC. Interestingly however, injection into
the CNS conversely results in an orexigenic effect. The anorectic effects
are thought to occur through the Y2 receptor [182] which is highly
expressed on NPY neurones at the ARC, whereas the orexigenic effects
are considered to be mediated through Y1 and Y5 receptors [183].
These results have led to some controversy in the literature, and it has
been proposed that under physiological conditions, PYY does not
typically reach Y1 and Y5 receptors to achieve a hunger effect, and
typically results in decreased food intake. Furthermore, as the Y2

receptor is also expressed in the NTS, and the nodose ganglion of the
vagus nerve, a role for its activity via the vagus has been proposed
[184]. This is substantiated by the abolishing of PYY food suppression
by vagotomy [166].

The results of surgery on PYY closely reflect those seen for GLP-1
(Table 3). Here all the studies of bypasses (both foregut and midgut)
quote increases in post-prandial and basal PYY levels. There were
no decreases and no non-significant rises. These bypass procedures
are stimulating the hindgut and activating the ‘ileal brake’. Lugari
et al. demonstrated that not only are PYY levels raised, but the levels
of its breakdown enzyme (Dipeptidyl peptidase-4 – DPP-IV) are
unchanged. The role of PYY however is still incompletely understood,
andmany studies fail to specify if levels achieve those of lean controls.
Furthermore the finding that biliopancreatic diversion results in a
greater increase in PYY and a lower weight loss than gastric bypass is
also interesting as it might elude to other mechanisms that modulate
PYY release. One mechanism for this could be the altered flow of bile,
as Welch et al. performed a two armed study in Pavlov pouch canines
undergoing either gastric bypass or a non-bariatric duodenal switch.
They revealed that the surgical alteration of bile flow led to a greater
rise in both basal and post-prandial PYY levels when compared to
gastric bypass [185].

Of the three studies that measured PYY after restrictive surgery,
two reported no significant changes, whereas one reported an
increase.

9. Other hormones and animal models

A number of other hormones have been measured before and after
bariatric operations, although they occur in such few studies that it
becomes difficult to observe any trends as how metabolic surgery can
modulate them. A few notable exceptions are mentioned below.

Vasoactive intestinal peptide (VIP), Serotonin (5HT) and Neuro-
peptide Y (NPY) are all gut and brain hormones. VIP increases
gastrointestinal secretion and smooth muscle relaxation to augment
intestinal motility, whereas Serotonin reduces appetite whilst NPY
increases food intake. VIP was increased in one gastric bypass study
after a glucose test [153], although further studies in both restriction
and bypass revealed no significant effects of surgery [137]. Neither
5HT [137] or NPY [66,114] aremodulated by bariatric operations in the
reports to-date.

Of the six animal experiments studying gut hormones, five were
in rodents (one restrictive [194] and four bypass procedures
([22,124,195,196]). Borg et al. not only demonstrated a rise in PYY
and GLP-1 but also revealed up regulation of GLP-2 after BPD [196].

There is also recent evidence suggesting that a gastrointestinal
peptide not historically considered a hormone, apolipoprotein AIV
(Apo A-IV) can promote satiety. It is an approximately 46-kDa
glycoprotein released from the small intestine, liver and hypothala-
Downloaded for Anonymous User (n/a) at Massachusetts General Ho
For personal use only. No other uses without permission. C
mus in response to ingested triglyceride signals [197,198]. Apo A-IV
first enters the intestinal lymph in chylomicrons or in lipoprotein-free
form before entering the systemic circulation. Both systemic and
central nervous administration result in a decreased meal size in
rodents, while administration of Apo A-IV antiserum increases meal
size [199]. Additionally Apo A-IV inhibits gastric emptying and carries
both anti-inflammatory and anti-atherogenic properties.

Few studies have examined the post-bariatric changes of Apo A-IV,
one demonstrates a 47% decrease at 1 month which normalises by
one year [75], whilst another reports an increase at approximately
19months after gastric bypass [200]. Although themechanism for this
is still unclear, it is interesting to note that PYY (typically increased
after gastric bypass) can mediate intestinal Apo A-IV release [201],
whilst Apo A-IV can work in association with the CCK(1) Receptor to
modulate the PYY activation of vagal afferents and also decrease
gastric emptying [202].

10. Conclusions

Gut peptides may be a major contributor through which the
gastrointestinal tract can communicate with the brain to regulate
feeding behaviour and energy balance. This gut-brain axis has
developed a sophisticated collection of peptides with which to relay
its messages. These can travel directly via the nervous system, the
systemic circulation or both to deploy energetic information to the
brainstem and higher food regulatory centres. Bariatric or Metabolic
surgical procedures are not all the same and each transmits a
characteristic hormonal profile that reaches the brain. Anatomical
variations in surgery can result in distinct metabolic message that
ultimately leads to an improvement in both obesity and metabolic
status. Although 34 years of surgical gut hormonal modulation
research has existed, the field continues to grow and requires
continued efforts to build on current knowledge.

So far, operations that bypass the foregut (RYGB and BPD)
demonstrate a much stronger gut hormone responses than purely
restrictive procedures such as gastric banding. These enhanced actions
have a proven benefit in terms of weight loss and also metabolic
outcomes, including a significant improvement in the resolution of
diabetes [27]. Consequently, procedural decision-making is now
guided by choosing operations that specifically improve the individual
metabolic dysfunction in each patient. Novel operative variations
and improved technique should aim to further enhance current gut
hormonal effects, but also introduce the modulation of other gut
hormonal pathways. These can add to the metabolic surgical arsenal
in such a way that can ultimately combat each patient's metabolic
dysfunction with a ‘tailor-made’ operation, whilst also revealing
further mechanistic knowledge of operative success.

As a result, the study of these operations offers us unique insights
of how modified gut hormonal release can provide new treatments
and targets for obesity, appetite and metabolic disorders.
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